Vision Measurements for Automated Microrobotic Paper Fiber Studies
نویسندگان
چکیده
The mechanical characterization of paper fibers and paper fiber bonds determines the key parameters affecting the mechanical properties of paper. Although bulk measurements from test sheets can give average values, they do not yield any real fiber-level data. The current, state-of-the-art methods for fiberlevel measurements are slow and laborious, requiring delicate manual handling of microscopic samples. There are commercial microrobotic actuators that allow automated or tele-operated manipulation of microscopic objects such as fibers, but it is challenging to acquire the data needed to guide such demanding manipulation. This thesis presents a solution to the illumination problem and computer vision algorithms for obtaining the required data. The solutions are designed for a microrobotic platform that comprises actuators for manipulating the fibers and one or two microscope cameras for visual feedback. The algorithms have been developed both for wet fibers, which can be treated as 2D objects, and for dry fibers and fiber bonds, which are treated as 3D objects. The major innovations in the algorithms are the rules for the micromanipulation of the curly fiber strands and the automated 3D measurements of microscale objects with random geometries. The solutions are validated by imaging and manipulation experiments with wet and dry paper fibers and dry paper fiber bonds. In the imaging experiments, the results are compared with the reference data obtained either from an experienced human or another imaging device. The results show that these solutions provide morphological data about the fibers which is accurate and precise enough to enable automated fiber manipulation. Although this thesis is focused on the manipulation of paper fibers and paper fiber bonds, both the illumination solution and the computer vision algorithms are applicable to other types of fibrous materials.
منابع مشابه
A Fully Automated Robotic System for Microinjection of Zebrafish Embryos
As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes the problems inherent in manual operati...
متن کاملContact Detection in Microrobotic Manipulation
This paper presents a computer vision-based method for visually detecting the contact between an end-effector and a target surface under an optical microscope during microrobotic manipulation. Without using proximity or force/touch sensors, this method provides a submicrometer detection accuracy and possesses robustness. Fundamentally, after the establishment of contact in the world frame, furt...
متن کاملInvestigating Protein Structure Change in the Zona Pellucida with a Microrobotic System
In this paper we present a microrobotic system that integrates microscope vision and microforce feedback for characterizing biomembrane mechanical properties. We describe robust visual tracking of deformable biomembrane contours using physics-based models. A multi-axis microelectromechanical systems based force sensor is used to determine applied forces on biomembranes and to develop a novel bi...
متن کاملA Fully Autonomous Microrobotic Endoscopy System
In this paper, design of an autonomous microrobotic endoscopy system is presented. The proposed microrobotic endoscope is a vision-guided device, developed to facilitate navigation inside a human colon. The design of the entire system is divided into three areas viz. design of a microrobotic carrier, path planning and guidance, and an off-board control system. A microrobotic design based on pne...
متن کاملNanoNewton Force Sensing and Control in Microrobotic Cell Manipulation
Cellular force sensing and control techniques are capable of enhancing the dexterity and reliability of microrobotic cell manipulation systems. This paper presents a vision-based cellular force sensing technique using a microfabricated elastic cell holding device and a sub-pixel visual tracking algorithm for resolving forces down to 3.7nN during microrobotic mouse embryo injection. The techniqu...
متن کامل